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ABSTRACT 

 

Kernel density estimation depends on appropriate smoothing parameter selection in its implementation since the method 

is mainly for data exploration and visualization purposes. While considering the effect of the smoothing parameter, the 

form of aggregation employed will determine the size of the smoothing parameter required for better performance. This 

paper considered two aggregating methods with respect to the asymptotic mean integrated squared error (AMISE) as the 

criterion function by introducing the multiplier factor that regulates the selection of smoothing parameter in the 

multiplicative aggregation. The results of the forms of aggregation considered were compared using real life data.   
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INTRODUCTION 

The Gaussian Mixture Model (GMM) and the Kernel 

Density Estimators (KDE) are the most popular 

nonparametric density estimation techniques with 

practical applications (Kobos and Mandziuk, 2009). In 

kernel density estimation, there is the kernel function that 

averages the observations to produce a smooth 

approximation (Silverman, 1986). The kernel function is a 

probability density function and also a standardized 

weighting function. The smoothness of any kernel density 

estimate is majorly determined by the smoothing 

parameter. The smoothing parameter is regarded and 

interpreted as a resolution of observations viewed such 

that the technique of viewing the set of observations with 

different resolutions will give better interpretation of the 

structures in the observations under consideration (Kobos 

and Mandziuk, 2009). Researchers are providing solution 

to the problem of smoothing parameter selection with 

some recent works which includes Chacón and Duong, 

2010; Zhang et al., 2011; Chacón and Duong, 2013, 

Chacon and Duong, 2015; Jiang and Provost, 2014). 

In statistical learning environment, different aggregation 

methods were considered especially in classifications and 

regression problems such as Bagging (1996a), Stacking 

(Breiman, 1996b), Boosting (Schapire, 1977) and Random 

forests (Breiman, 2001). Stacking was further extended to 

density estimation (Smyth and Wolpert, 1999). Originally, 

the boosting idea was designed for classification problems 

but it was extended to kernel density estimation (Marzio 

and Taylor, 2005) and was further revisited (Ishiekwene, 

2008), where it was regarded as a bias reduction strategy. 

This paper presents a solution to the problem of smoothing 

parameter selection associated with the kernel density 

estimation particularly in aggregating. We have shown by 

numerical examples that aggregations could produce better 

results in terms of performance provided the smoothing 

parameter is chosen rightly while aggregating. We shall 

discuss briefly the existing aggregation algorithms and 

describe the role of the smoothing parameter in the 

aggregations that will be considered. Finally, we shall 

introduce the multiplier factor for the multiplicative 

aggregation and compare its results with the additive 

aggregation method. 

Aggregation Algorithms 

Aggregation algorithms in density estimation can be 

grouped into two major categories depending on the 

aggregation form employed (Bourel and Ghattas, 2013). 

The first group known as the additive model with the form 

of linear combination is given by 

 

Where are the coefficients of the model and   is a 

parametric or nonparametric density family. The values of  

 could be different parameters that can be evaluated in 

the case of parametric density estimation, different 

kernels or different smoothing parameters for a kernel *Corresponding author e-mail:  suzuazor@yahoo.com 
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function in the case of kernel density estimation (Bourel 

and Ghattas, 2013). The model in Equation (1) has been 

applied in classification and regression problems like 

boosting, bagging and other topics in parametric 

regularization (Ridgeway, 2002; Rosset, 2003). 

If the additive model in Equation (1) is taken to be a 

nonparametric density family, particularly the kernel 

density estimators with smoothing parameter, then we 

have 

 

Where  is a kernel function and  is the bandwidth 

(Silverman, 1986). The major problem that is confronting 

the implementation of the kernel density estimator since 

its introduction is the choice of the smoothing parameter 

also known as the bandwidth. The choice of smoothing 

parameter is often critical and crucial during 

implementation but not the choice of the kernel function 

since most kernel functions are probability density 

function (Silverman, 1986). The kernel function in 

Equation (2) is a non-negative function that must satisfy 

the conditions 

 
The multidimensional kernel density estimator of 

Equation (2) using the product approach is 

 

Where  is the kernel function with variance 

 and  are the smoothing 

parameters for each dimension (Epanechnikov, 1969; 

Sain et al., 1994). 

The second form of aggregation is the multiplicative 

model that was introduced (Marzio and Taylor, 2004) and 

was also extended to the multidimensional case in kernel 

density estimation (Marzio and Taylor, 2005). The 

multiplicative aggregation is a bias reduction technique 

and it uses the kernel density estimator. This aggregation 

is of the form 

 

The multivariate form of the multiplicative aggregation 

also known as boosting algorithm is a systematized 

algorithm where each step m is computed using Equation 

(6) given as (Bourel and Ghattas, 2013)  

 

Where is a fixed kernel,  are the smoothing 

parameter(s) and is the weight of observation   at 

step   (Bourel and Ghattas, 2013).  The weight of each 

observation is then updated as(Marzio and Taylor, 2005)  

 

Where   is the leave-one-out estimator of the 

multivariate product kernel that uses different smoothing 

values for its axes and is given by  

 

Also  is of the form given by 

 

Boosting in kernel density estimation involves the 

weights being updated at each step and with the final 

estimator being a product of all the density estimates that 

integrates to unity (Marzio and Taylor, 2005; Marzio and 

Taylor, 2004). The algorithm given below is for the 

multidimensional case in which the product kernel that 

uses different smoothing parameter was employed. 

 

STEP1.  Given that   initialise the weights 

of the observations 

                 

STEP2.  Select  the smoothing 

parameters. 

STEP3.  For   

(i) Obtain a weighted kernel estimate 

 
(ii)  Update the weights according to 
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STEP4.  Provide as output 

 
Where   is the normalization constant such that   

integrates to unity. 

Smoothing Parameter Selection in Kernel Aggregation 

Appropriate selection of the smoothing parameter is often 

critical to the process of kernel aggregation in kernel 

density estimation because its performance is based on its 

right selection. The quality of the estimates  in 

Equation (4) and Equation (6) is measured by the 

asymptotic mean integrated squared error defined as 

 

 

Where  represents 

the roughness of the kernel,  is the variance, 

 is the roughness of the 

function,  is the trace of a matrix,  is the sample size, 

 are the smoothing parameters to be 

determined,  is the dimension of the kernel and  is 

the Hessian array of  (Sain, 2002). The smoothing 

parameter that minimizes Equation (10) above is given by 

 

This smoothing parameter is of order  

with .  There is no generally 

acceptable rule for selecting smoothing parameter in the 

additive case but different rules are available. The 

multiplicative aggregation that is known to be bias 

reducing approach demands larger smoothing parameter 

in its implementation (Marzio and Taylor, 2005; 

Ridgeway, 2002; Siloko and Ishiekwene, 2016). 

 

The multiplicative aggregation known as boosting in 

kernel density estimation leads to a reduction in the bias 

component of the AMISE but with its major problem 

being the smoothing parameter required for its iterations 

(Marzio and Taylor, 2005). The reduction in the bias 

component resulted in a reduction in the AMISE. In 

solving the problem of smoothing parameter selection in 

multiplicative aggregation, we introduced a multiplier 

known as the bandwidth multiplier which is denoted by . 

Therefore the smoothing parameter required for the 

multiplicative aggregation in kernel estimation is 

 

Where 

 

In Equation (12) above,  are the smoothing 

parameters obtained from Equation (11),   represents the 

number of iterations in the aggregation and   denotes 

the order of the kernel. The bandwidth multiplier factor 

helps in the selection of smoothing parameters for the 

multiplicative aggregation and has solved curse of 

dimensionality problem that is associated with the 

multivariate kernel density estimation (Marzio and 

Taylor, 2004; Sain, 2002). In the application of Equation 

(12), we excluded the case when   in Equation (13) 

because it will result in second order kernel which is the 

same as the additive aggregation form. 

RESULTS AND DISCUSSION 

In this section, we will compare the estimates of the 

additive and the multiplicative aggregations. The results 

of the additive aggregation in terms of performance were 

compared with the multiplicative aggregation in a tabular 

form and the later displaying better results than the former 

in terms of performance using two data sets. The 

performances of these two forms of aggregation will be 

measured using the AMISE as the error criterion. While 

the additive aggregation tend to retain some desirable 

features of the data set such as multimodality, the 

multiplicative aggregation at times may smooth out the 

multimodality feature as a result of using larger 

smoothing parameters but with a reduction in the AMISE. 

In all the cases considered, we standardized the data in 

order to obtain equal variances in each dimension because 

in most multivariate statistical analysis, the data should be 

standardized in order to make sure that the difference 

among the ranges of variables will disappear (Sain et al., 

1994; Sain, 2002; Simonoff, 1996; Cula and Toktamis, 

2000). 

The first data set examined is the Volcanic Crater data of 

Bunyaruguru Volcanic Field in Western Uganda (Bailey 

and Gatrell, 1995). It involves the Locations of Centers of 

Craters of 120 volcanoes in two variables in which 
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variable X represents the first center while variable Y 

represents the second center.   

A significant feature of this data set that is very noticeable 

from the kernel estimates of the additive aggregation is 

the bimodality of the data but this is hidden as presented 

by the multiplicative aggregation due to the usage of 

larger smoothing parameter and the multiplication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A significant feature of this data set that is very noticeable 

from the kernel estimates of the additive aggregation is 

the bimodality of the data but this is hidden as presented 

by the multiplicative aggregation due to the usage of 

larger smoothing parameter and the multiplication 

involve. Figure 1 is the kernel estimate of the additive 

aggregation while Figure 2 and Figure 3 are the kernel 

estimates of the multiplicative aggregation.                                                    
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Fig. 1. Kernel Estimate of Additive Aggregation with   Smoothing Parameter. 
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Fig. 2. Kernel Estimates of the First Step of the Multiplicative Aggregation. 
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Fig. 3. Kernel Estimates of the Second Step of the Multiplicative Aggregation. 
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As generally known, one method is better than the other 

one when it gives a smaller value of the AMISE 

(Jarnicka, 2009). The multiplicative aggregation (higher 

order bias reduction techniques) yielded AMISE with 

smaller values when compared with the additive method 

(second order kernels). This shows that the multiplicative 

aggregation performed better than the additive 

aggregation in terms of reduction in the AMISE but is 

capable of smoothening out the inherent features of the 

set of observations that could be of great statistical 

significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second data set examined is the waiting time between 

eruptions and the duration of the eruption for the Old 

Faithful Geyser in Yellowstone National Park, Wyoming, 

USA (Azzalini and Bowman, 1990). The data set is made 

up of 272 observations on two variables in which variable 

X represents the duration of the eruption while variable Y 

represents the waiting time between eruptions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 and Table 2 below shows the smoothing 

parameters, the asymptotic integrated variance (AIV), the 

asymptotic integrated squared bias (AISB) and the 

asymptotic mean integrated squared error (AMISE) of the 

forms of aggregation considered with the AMISE as the 

error criterion function for measurement of performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One very important point to note from the kernel 

estimates of this data is that the data set is bimodal and 

this provides very strong evidence in favour of eruption 

times and the time interval until the next eruption 

exhibiting a bimodal distribution (Silverman, 1986). 

Figure 4 is the kernel estimate of the additive aggregation 

while Figure 5 and Figure 6 are the kernel estimates of the 

multiplicative aggregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method      

 

0.48018  0.48053 0.00287398  0.00143694  0.00431092  

 

       Table 1. Analysis of Additive Aggregation for the Crater Data. 

 

Steps.      

1  0.96036 0.96106  0.000718496 0.000059200461 0.000777696461  

2  1.17620 1.17705 0.000478997  0.000000418095 0.000479415095  

 

 Table 2. Analysis of Multiplicative Aggregation for the Crater Data.  
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Fig. 4. Kernel Estimate of Additive Aggregation with   Smoothing Parameter. 
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Table 3 and Table 4 below shows the smoothing 

parameters,  the asymptotic integrated variance (AIV), the 

asymptotic integrated squared bias (AISB) and the 

asymptotic mean integrated squared error (AMISE) of the 

forms of aggregation considered with the AMISE as the 

error criterion for performance evaluation. The analysis of 

the performances of the additive and multiplicative 

aggregations is presented in Table 3 and Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the analysis show that the multiplication 

aggregation also known as boosting in kernel estimation 

resulted in smaller values of the AMISE when compared 

with the additive aggregation. The additive aggregation 

retained the bimodality of the data but this tends to 

disappear at the second step of the multiplicative 

aggregation.  
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Fig. 6. Kernel Estimates of the Second Step of the Multiplicative Aggregation. 
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 Density 
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  X 
Fig. 5. Kernel Estimates of the First Step of the Multiplicative Aggregation. 

Method      

 

0.43105  0.42301 0.00160451  0.00080239  0.00240690  

 

   Table 3. Analysis of Additive Aggregation for the Faithful Data. 

 

Steps.      

1  0.86210 0.84602  0.000401128 0.000013524623 0.000414652623  

2  1.05585 1.03616 0.000267419 0.000000178189 0.000267597189 

 

 Table 4. Analysis of Multiplicative Aggregation for the Faithful Data.  
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CONCLUSION 

 

The additive and multiplicative aggregations were 

considered with the later displaying better results than the 

former in terms of performance using the AMISE as the 

error criterion function. The multiplicative aggregation 

technique targets reduction in the AMISE without 

considering features such as multi-modality that might be 

present in a given data set due to the principle of over 

smoothing which means using larger smoothing 

parameters. As observed from the data sets considered, 

the additive aggregation retained the features of the data 

set such as bimodality while the multiplicative 

aggregation at times may smooth out this feature as a 

result of using larger smoothing parameters but with a 

reduction in the AMISE. The smoothing parameter used 

for the multiplicative aggregation was obtained using the 

bandwidth multiplier. 
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